Collective Nominal Semantic Role Labeling for Tweets

نویسندگان

  • Xiaohua Liu
  • Zhongyang Fu
  • Furu Wei
  • Ming Zhou
چکیده

Tweets have become an increasingly popular source of fresh information. We investigate the task of Nominal Semantic Role Labeling (NSRL) for tweets, which aims to identify predicate-argument structures defined by nominals in tweets. Studies of this task can help fine-grained information extraction and retrieval from tweets. There are two main challenges in this task: 1) The lack of information in a single tweet, rooted in the short and noisy nature of tweets; and 2) recovery of implicit arguments. We propose jointly conducting NSRL on multiple similar tweets using a graphical model, leveraging the redundancy in tweets to tackle these challenges. Extensive evaluations on a human annotated data set demonstrate that our method outperforms two baselines with an absolute gain of 2.7% in F

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective Semantic Role Labeling for Tweets with Clustering

As tweets have become a comprehensive repository of fresh information, Semantic Role Labeling (SRL) for tweets has aroused great research interests because of its central role in a wide range of tweet related studies such as fine-grained information extraction, sentiment analysis and summarization. However, the fact that a tweet is often too short and informal to provide sufficient information ...

متن کامل

Semantic Role Labeling for News Tweets

News tweets that report what is happening have become an important real-time information source. We raise the problem of Semantic Role Labeling (SRL) for news tweets, which is meaningful for fine grained information extraction and retrieval. We present a self-supervised learning approach to train a domain specific SRL system to resolve the problem. A large volume of training data is automatical...

متن کامل

Enhancing Semantic Role Labeling for Tweets Using Self-Training

Semantic Role Labeling (SRL) for tweets is a meaningful task that can benefit a wide range of applications such as finegrained information extraction and retrieval from tweets. One main challenge of the task is the lack of annotated tweets, which is required to train a statistical model. We introduce self-training to SRL, leveraging abundant unlabeled tweets to alleviate its depending on annota...

متن کامل

SEMANTIC ROLE LABELING OF IMPLICIT ARGUMENTS FOR NOMINAL PREDICATES By

SEMANTIC ROLE LABELING OF IMPLICIT ARGUMENTS FOR NOMINAL PREDICATES

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012